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RELATIONSHIPS BETWEEN ELEMENTS OF
THE STOKES MATRIX

Edward S. Fry and George W. Kattawar
Texas A&M University
Department of Physics
College Station, Texas

ABSTRACT

\hlthough there are sixteen elements of the Stokes Matrix, they are con-
structed from basically four amplitudes and three phase differences. This
of course implies that there exists nine independent relationships connecting
the elements. These relationships are equalities for scattering by a single
particle in a fixed orientation and in a fixed direction. They become
inequalities when Stokes matrices from an ensemble of particles differing
in size, orientation, morphology, or optical properties are added incoherently.
These relations will prove to be very useful for providing consistency checks

on experimental measurements of all sixteen elements.

Accession For<"__

NTIS CRAkI
pric T28 [}
Unonacunted 0

lestifica?.ion_...—____-—f

e

BY e m e
pistributien/ _77*

. Avallohilite gcedns
7T cAlall ounid/or

5t | epecial




I. Introduction

In the classic work of Van de Hulst]

, he points out the fact that there
exists nine independent relationships (equalities) between the sixteen
elements of the 4x4 Stokes matrix. These relations however were not presented.
He also stated that when Stokes matrices were added incoherently that the
equalities became inequalities. This situation arises when one is measuring
the combined Stokes matrix from an ensemble of particles differing in size,

orientation, morphology or optical properties.

b i e

Experimentalists are now routinely measuring all sixteen elements of the
Stokes matrix for both single particles and collections of partic]es.2'4 ?
It is therefore important that these relations be employed routinely to
check for consistency. To our knowledge the only authors who have presented
the equalities explicitly were Abhyankar and Fymat.5 We will show that
the first six of their relations (10c - 15¢), which are quadratic in the
elements are correct, however their remaining three equations (19c - 21c) are
quartic relations which we will show are actually the product of two quad-
ratic equalities, one of which is not independent and is therefore

redundant. We will also present proofs for the inequalities along with

examples. ‘

II. DERIVATION OF EQUALITIES

We will use the notation of Van de Hulst]

in the following derivations.

Let the complex scattered amplitudes be written as

o a1

A = aje‘“j, j=1,2,3,4. )
and let

[ ] A




(2a)
(2b)
(2¢)
(2d)
(2e)
n = B4 - B3 (2f)
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With this notation the elements of the Stokes matrix (fij) can be written

as follows:
£17 = (2 + a7 + o + a2, (3a)
f1p = (-2 + a? - agf + a2, (3b)
fl3 = aya3 COSE + au, COSY, (3c)
flg = - 9993 siné- ajay siny, (3d)
) = (-a]2 + azz + u32 - a42)/2. (3e)
fap = (a2 + a0 - a? - 0212, (3F)
fy3 = agag €OSS - aja, COSY, (3q)
fog = —aguy siné + aqa, siny, (3h)
fi] = apeg COS + aqaz COSA, (3i)
fap = apey COSO = aqaz COSA, (33)
f33 = ajay COSe + aga, COSn, (3k)
f34 =-ay09 sine + a3, sinn, (31)
f41 = axay sino + ajaq sinx, (3m)
fao = agaq Sino - aqag sinmy, (3n)
f43 = ag0, sine + aq0, sinn, (30)
f“ = 0y, COSE = aga, €OSn. (3p)




With the elements written in the above form, it is quite straight forward

to obtain the following nine independent equalities:
2 2

(fy + f22)° - (fyp + 5)
2 2

(f1y = F25)° = (fy - 1)

|
P
=]

2 2
(F33 + )" + (fg3 - f34)° = doy%a),  (42)
(f33 - f4g) + (Fgy + £307 = da%a?  (ab)

(Fry + £0)% - (Fp + 10)° = (frg 4 f)” + (g + F)7 4o’ (4c)
(Frg = 0)% = (fyg = £0)° = (Fy3 = 1) o (- 10" = aye)’, (a0)
(Fry + 1120 = (g + )% = (g # 13)” + (1 + 0% = tay%a) (ae)
(Fry = f12)° = (Fy = £0) = (F3y = 1307 # (1 - £49) =ty (aF)
F13 14 - T3 T2a = Ta3 34 * fa3 Tag = -2agap0304 Sin (8y-8,485-8,) , (40)
f1a T23 - F13 24 = Faz T3 - Ty F32 = -20g0p033 sin (8y465-85-8,) , (4h)
f

In place of eqns. (4g) - (4i) we can use the following three independent

equations, namely,
2

2 2 2 2 2 2 2
fas = Taa * fag - fag = 37 - Frg - Fog ¥ Fag = daqopegeg cos (8)-8465-84) ,
(5a)
2 2 2 2 . 2 2 2 2 _
faz3 = faz * Tag - Fag = T30 - Ty - F327 + fao" = doqop030, cos (8y-8,-85+8y),
(5b)
2 2 2 2 2 2 2 2 _
f1" = fa * 0" = fao" = f1g - faq * 13 - fa3" = dagoya30, cos (B1+6,-83-8,) .

(5¢)
It should be noted that eqns. (4a) - (4f) were also obtained by Abhyankar and

5; however, eqns. (4g) - (4i) and (5a) - (5c) were given as products.

Fymat
For example their eqn. (19c) was given as the product of our eqns. (4g) and
(5a) yielding a quartic relation, which we now see is unnecessary. In fact,

it 1s not too difficult to show that the square of the 1hs of eqn. (5a) is

equal to the product of the middle termsof eqns. (4c) and (4d) minus four




times the square of the middle term of eqn. (4g).
An interesting equality can be obtained by summing eqns. (4a) - (4f) namely
.2 2 ...
i 155 = 45 1 1,2,3,4, (6)

It is interesting to note that for a spherical particle where

f = fp=f3=fa3=flg = fgn = fpa=Fu =0, (7a)
and

f11 = fa20 Fi2 = Fops P33 = fage F3g = -Fu3, (70)
that only one non-trivial equality exists which is eqn. (4a) which yields

= f1) * fag ¥ oyl (8)

T11. DERIVATION OF TNIQUALTTIES

We now would like to consider what happens when we add incoherently the
Stokes matrices from an ensemble of particles differing in size, orientation,
morphology or optical properties. We will use a superscript to denote

scattering amplitudes and phases for each member of the ensemble. With this

notation the 1hs (1eft hand side) of eqn. (4a) becomes I
T2 T T,2 .
whereas the rhs becomes ™
(f3; + f4I) + (f —J)z = 41)Jll‘ “]J“?J cos (|1 - n‘]). (9h)
T

It should be understood that fkl as used here denoteselements of the total
Stokes matrix of the ensemble and hence the use of the superscript T and also
that the summation indices i and j are over all members comprising the ]

ensemble. Now the rhs of eqn. (9a) can be written as
i i _ i i3 J j o3 i i
412 ay 9% azju25-2i2§u] ay ax ey + ayvoyVey “2)
i3 3 12 i 4 3 3
= 212 (Q] 02 - a] Gz ) + 4i§j“1 ﬂ2 G] 02

> 4 L Q]iazia‘juzj > 4 L ﬂ] 02 G]jﬂzj COS (t ‘(j) (9C)

B t,J




which is the rhs of eqn. (9b); and, therefore

2 T, Ty T T2
(F] + 6002 = (F3 + £1)° 2 (F33 4 F4)" + (Fag - F3q)°,

It is now clear that the inequalities corresponding to eqns. (4a)-(4f)

become

T Ty2 T T2 T, . Ty2 T . T2

(i + fpp)" - (Fyp + f51)° > (f33T+ f4+4) + (f43T f341)2’ (10a)
T T\ T T2 2

(fi7 = f22)° - (fyy - f12) 3,(f33T- f4%)2 + (f43T+ f34)2, (10b)
T, . T2 T, ,.Ty2

(F9 * F27)° = (Fp # £25)% 2 (f1374 F3)° + (fig * f245 , (10c)
T . T2 T . T2 T _T,2 T » o

(Fyg = f1)" - (Fyp - fz%) 2 (fyg - fz%)2 + (f14r- ), (104)
7. . T2 T 2 0

(Fyp + F1207 - (Fyy + fz%) > (¥ )" * (5 f42.[)2’ (10e)
T . T2 T 2 2 ) or

(fqy = f12)° = (1 = F22)° 2 (33 = F3p)" + gy f4és , (10f)

Now the inequality for eqn. (6) follows immediately and is
\IRC SR
ifs(fij) < 4(fy) 1.5 =1,2,3,4. (11)
One-way inequalities for eqns. (4g) - (4i) and (5a) - (5c) cannot be

established. For example the lhs of eqn. (4q) yields
: .i : i . . . : .

2i§ ay’aylaglay’ sin (87 -8,' 487 - 5,7, (12)

whereas the middle term of eqn. (4g) yields
R T TV T R ij_ L3 i_ 13

Zi;. @y @y aztay sin (B] 32 + 33 34 )’ (13)
and we can see that the inequality can go in either direction depending on the
amplitudes and relative phase difference at each scattering angle of particles
in the ensemble.

It should also be noted that the inequalities derived above also hold if

one makes measurements on a single particle but averages over a finite solid angle.




IV. Test Of Inequalities

To validate the inequalities we have presented, we performed the
following two calculations. We first computed the elements of the Stokes
matrix for a single sphere of size parameter 7.9109 with a real refractive
index of 1.6146. The results were then averaged over a 3° angular range.
We then tested eqn. (10) by using the normalized Stokes matrix i.e., we
define Fij = fij/fll and then eqn. (10) becomes

pX T,2
i,j(F‘ij)

<4;1,j=1,2,3,4. (14)
The results of this calculation are shown in Fig. 1 along with the only
non-zero normalized elements (with the obvious exception of F]] =1 for all
scattering angles) Fl2 = Foys F33 = Fpgs and Fya = -Fp. It is immediately
clear that there is a great deal of structure in the deviation of

ifj Fij2 from four. In fact a deviation as large as 18% occurs at a
scattering angle of - 157°.

The next case we considered was to average over a polydispersion of
spheres and test the inequality with no angular averaging. To do this we
assumed a Gaussian distribution of spherical particles with a mean size
parameter of 7.9109, the same as for the single sphere in Fig. 1, and a
standard derivation of 0.117 in size parameter and the same refractive index
as used in the single sphere case. These results are shown in Fig. 2.

What is particularly noteworthy is the fact that even though the normalized

elements are quite similar between the two cases, the R Fijz is quite
1,

dissimilar in structure.

' Due to the quadratic nature of the inequalities, we conjecture

A




that the use of them may provide a more discriminating test of small

differences between Stokes matrix elements of two slightly dissimilar
objects. Experimental verification of this idea is presently being

pursued and the results will appear in a future publication.

V. Conclusion

We have presented both the equalities and inequalities which occur
between the sixteen elements of the Stokes matrix. The use of them should
become a routine part of any experiment designed to measure them. The
reason being that they can be used as a self consistency test on the
experimental measurements. For example if one finds that any one of
the inequalities is violated, then one can safely assume that there are
noise and/or systematic problems in the measurements. This appears far

superior than simply trying to fit some theoretical curve to the data in

order to determine the noise level. The inequalities also hold for measure-

ments made on a single member of an ensemble averaged over a finite solid
angle which is always realized experimentally. We would also like to
make a conjecture that the inequality tests may provide a very useful way

for discriminating between two slightly dissimilar objects.

This research was supported by the Office of Naval Research through

contract NO0014-80-C-0113.
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FIGURE CAPTIONS

Fig. 1 Plgt of_z.Fijz;i,j = 1,2,3,4, for a single sphere as a function

1,]
of scattering angle for a 3° angular average. The computations
‘ were carried out using Mie theory for a size parameter of 7.9109.

and a real refractive index of 1.6146. Also shown are the

‘ normalized elements F12’ F33, and F43.

Fig. 2 Same as Fig. 1 except a Gaussian size distribution of spheres was

‘ used with a mean size parameter of 7.9109and a standard deviation
of the size parameter of 0.117. No angular averaging was done

' for this calculation.
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